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LETTER TO THE EDITOR 

The number of distinct sites visited by a tracer particle 
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Netherlands 
$ Laboratoire de Physique Thdorique et Hautes Energies, Universitt d e  Paris-Sud, bltiment 
211,91405 Orsay, France 

Received 4 June 1990 

Abstract. We calculate the average number of distinct sites visited by a tracer particle in 
a three- or higher-dimensional lattice gas with vacancy density p, in the limit of low density 
and large times, i.e., p i 0  and pt >> 1. 

We define the tracer particle problem. Consider an infinite d-dimensional hypercubic 
lattice, with a fraction 1 - p of its sites occupied by identical particles. The remaining 
sites are empty. All particles on the lattice perform Brownian motion, but subject to 
a ‘no double occupany’ condition. Alternatively, one may think of the vacancies (empty 
sites) as performing simple random walks, which in the limit p i 0  become independent. 
Next, one of the particles is selected at random, and is called the tracer particle. The 
object now is to investigate its motion, for example by calculating its diffusion constant. 

When studying this problem, the general observation usually made is that many 
of the properties of the motion of the tracer particle can be found by first considering 
the corresponding property for a simple random walk on the same lattice and afterwards 
applying a ‘renormalization of time’ in the obtained result. For example, the mean 
square displacement of a simple random walk on a d-dimensional hypercubic lattice 
and in a distance time t = 0, 1, . . . is given by 

( r 2 ) ,  = t. (1) 

For the corresponding tracer particle problem (see, e.g., the review article by Kehr 
and Binder [l]) one finds for the mean square displacement of the tracer particle, if 
the step frequency of an isolated vacancy is taken as the unit of time, 

(r9f ”- Pf(P)t pt >> 1. (2) 

Obviously, (2) may be obtained from (1) by replacing t by pf (p ) t .  The factor p comes 
in since the tracer particle can move only when it is reached by a vacancy, which, on 
average, happens every p-’ time units. The factor f ( p )  is called the correlation factor 
and takes into account the characteristic backward correlation effects in the motion 
of the tracer particle (to see that these effects are there just consider two successive 
moves of the tracer particle due to the same vacancy). Only for p = 0 and p = 1 can 
its value be calculated exactly, but for general p a rather accurate approximation exists 
c21. 
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As Czech [ 31 showed, however, in three and higher dimensions, the ‘reriormalization 
procedure’ sketched above does not work for the calculation of ( Y J ,  the average 
number of distinct sites visited by the tracer particle at time t. In fact, he found that 
(9,) could, asymptotically, be described remarkably well by modelling the tracer particle 
motion as a special Correlated random walk, called the backward jump ( BJ) model, with 
appropriately chosen, p-dependent, step probabilities (see [3]). The reason for this 
good agreement was not fully clear. We shall show now that, arguing along the same 
lines as Czech, one can find the exact answer for (9,) in the limit p i 0  and pt >> 1. We 
shall indeed describe the tracer particle motion as a correlated random walk, with 
afterwards t replaced by pt for the reasons given above, but, instead of the BJ model 
Czech used, we shall use a more general correlated random walk model. 

To be specific, we consider a correlated random walk with a one-step memory on 
a d-dimensional hypercubic lattice in discrete time t. At any instant of tirne the walker 
steps to one of its nearest-neighbour sites. Let A denote the probability that two 
consecutive steps of the walker are in opposite directions, B the probability that they 
are in the same direction, and C the probability for them to be in any of the other, 
right-angled, configurations. Then obviously, 

(3) A +  B +  2(d - l )C = 1. 

The BJ model employed by Czech corresponds to taking B = C. Ernst [4] has studied 
this ABC model and finds 

l d  1 + ( A  - B )  COS qi - c  d i = l  1 - 2 ( B - C ) c o s q i + ( B - A ) ( B + A - 2 C 5  
(4) - 1 ”  

I c =o P . ( O ) = - - a [  --51 ddq 1 - 2 c  d 

m 

COS qi+A- B 
i = l  I - ~ ( B - C ) C O S ~ ~ + ( B - A ) ( B + A - ~ C )  

where P,(O) denotes the probability for the walk to be at its starting point at time t .  
Formula (4) was in fact first derived by Gillis [ 5 ] ,  albeit in a rather complicated way 
involving a lengthy manipulation of determinants. The average number of distinct sites 
(S,) visited by a random walk (whether correlated or not) in three and higher dimensions 
is asymptotically given by [ 6 ]  

Hence, using (4), (S,) is known for the ABC model. 
We shall now explicitly treat the three-dimensional tracer particle problem, in order 

to be able to compare with Czech’s results. The procedure is easily generalized to 
higher dimensions. We first consider a tracer particle and a single vacancy on the 
infinite three-dimensional lattice. The probability Bo that after a first step the tracer 
particle will ever make a second step in the same direction, as well as the corresponding 
probabilities A. for reversal and CO for stepping sideways are known. Sholl [7] states 
them as 

A0 = 0.223 423 . . . 
Bo=0.013 5 8 1 . .  . 
Co=O.O25 883.. . I 

Since Ao+ Bo+4Co< 1 it is not certain that there will be a second step.. However, if 
we now introduce a finite density p of vacancies, then the tracer particle will make an 
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infinite number of steps, since vacancies will keep arriving at the site of the particle 
at a constant rate p. In the limit pJ0 moves of the tracer particle due to different 
vacancies are uncorrelated. If a given vacancy, after having caused a step of the tracer 
particle, does not come back to it, then a different vacancy will come in and cause a 
step in an independent direction. This shows that the ABC model applies exactly to 
the tracer particle motion if one chooses the probabilities A, B, and C according to 

X = A, B, C, also in X o .  (7) 

It is possible to show that with this prescription the low-density limit of the correlation 
factor f ( p )  has the corect value [7,8]. Also one may show that 

A = l  3 ( sa )  

and that in d dimensions A = l/d. For B and C we find from (6) and (7) 

B = 0.123 49.. . C = 0.135 79 . .  . . ( 8 b )  

But then it is clear, B and C being rather close to one another, why the BJ model 
works so well. In the low-density limit Czech uses the values A = 0.341 53 . . . , B = C = 
0.131 6 9 . .  . , very close to the values in (8a)  and (8b) ,  respectively. Evaluating (4) 
numerically for the three-dimensional case with the values A, B, C of (8a) and ( 8 b ) ,  
we find 

(9,) = 0.4907 . . . pt 

(Sg) z 0.4863 . . . pt. 

p<< 1, pt >> 1. (9) 

(10) 

This should be compared to Czech’s 

Our result is -0.9% higher than Czech’s BJ approximation and is consistent with his 
simulation results which are systematically somewhat higher than the prediction of 
the BJ model but where ‘the deviations are less than ~ 1 . 5 % ’  [3]. 
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